Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.24.169334

ABSTRACT

A major global effort is currently ongoing to search for therapeutics and vaccines to treat or prevent infection by the SARS-CoV-2 virus. Repurposing existing entities is one attractive approach. The heparan sulfate mimetic pixatimod is a clinical-stage synthetic sulfated compound that is a potent inhibitor of the glycosidase heparanase, and has known anti-cancer, anti-inflammatory and also antiviral properties. Here we show that pixatimod binds directly to the SARS-CoV-2 spike protein S1 receptor binding domain (RBD) and alters its conformation. Notably, this site overlaps with the known ACE2 binding site in the S1 RBD. We find that pixatimod inhibits binding of recombinant S1 RBD to Vero cells which express the ACE2 receptor. Moreover, in assays with three different isolates of live SARS-CoV-2 virus we show that pixatimod effectively inhibits viral infection of Vero cells. Importantly, its potency is well within its safe therapeutic dose range. These data provide evidence that pixatimod is a potent antiviral agent against SARS-CoV-2. Together with its other known activities this provides a strong rationale for its clinical investigation as a new multimodal therapeutic for the current COVID-19 pandemic.


Subject(s)
Neoplasms , COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.02.29.971093

ABSTRACT

Many pathogens take advantage of the dependence of the host on the interaction of hundreds of extracellular proteins with the glycosaminoglycans heparan sulphate to regulate homeostasis and use heparan sulphate as a means to adhere and gain access to cells. Moreover, mucosal epithelia such as that of the respiratory tract are protected by a layer of mucin polysaccharides, which are usually sulphated. Consequently, the polydisperse, natural products of heparan sulphate and the allied polysaccharide, heparin have been found to be involved and prevent infection by a range of viruses including S-associated coronavirus strain HSR1. Here we use surface plasmon resonance and circular dichroism to measure the interaction between the SARS-CoV-2 Spike S1 protein receptor binding domain (SARS-CoV-2 S1 RBD) and heparin. The data demonstrate an interaction between the recombinant surface receptor binding domain and the polysaccharide. This has implications for the rapid development of a first-line therapeutic by repurposing heparin and for next-generation, tailor-made, GAG-based antivirals.


Subject(s)
Mucositis
SELECTION OF CITATIONS
SEARCH DETAIL